UCLA Extension

EMI/EMC Compatibility Design and Signal Integrity

ENROLL NOW

This course will be offered remotely via livestream.

How to Design Printed Circuit Assemblies & Enclosures for EMI-EMC Compliance Including IOT and 5G

If you are a design engineer, it pays for you to know how and why EMI testing is conducted, as well as the typical causes of failure.  This course offers all of the EMI information you’ll need to design compliant Printed Circuit Boards (PCBs) and your end item—including design considerations at CAE and CAD levels—for you to provide a compliant radiation/susceptibility product.  You’ll examine ways to prevent common EMI/EMC problems regarding power supplies, cables, connectors, slots, discontinuity of ground planes and more.  This three-day class will focus on EMI and RFI issues regarding PCBs, computers, analog designs and systems, along with relevant EMI regulations in the U.S., the European Union and Asia.  Highlights include PCB radiation basics, radiation and bypass on PCBs, PCB radiation suppression techniques, grounding designs/filtering, crosstalk/termination, power and ground planes, antenna loops, spread spectrum clocking, and differential mode and common-mode radiation.

Course Details & Outline

Who Should Attend:

  • Digital logic engineers
  • System architects, EMC specialists
  • Technicians, PCB layout professionals
  • IC designers, IC package designers
  • Application engineers
  • Anyone who works with high-speed digital logic
  • Anyone who works with any digital logic implemented in the submicron processes that are becoming standard in the industry
  • Engineering managers
  • Project managers

What You Will Learn:

  • How the EMI/EMC tests are conducted for PCBs/end item and how to avoid many configuration layout problems
  • Design techniques to minimize radiation/susceptibility for both digital and analog PCBs
  • Grounding and shielding techniques for PCBs, Backplanes, servers and enclosures. How to overcome radiation problems with PCBs that interface with connectors, cables, and hardware slots.

Topics Covered:

Fundamentals  – Frequency, Time, and Distance Lumped Versus Distributed Systems Four Kinds of Reactance Ordinary and Mutual Capacitance & Inductance

EM Fields – Geometry, C, L, & Zo interrelationships C & L Resonance EMI, Source, path and receptor.  Why all three must be present to have an EMI problem.

EMI regulations – standards for USA, Europe (EU), and Asia.  The course text provides a detailed description of all the test requirements, equipment to conduct the tests and the governing bodies/committees that mandate the tests. Threats – RFI, ESD, Power Disturbances, Internal EMI Issues – Frequency, Amplitude, Time, Impedance Dimensions

EMI Requirements– Commercial, Military, Avionics, Automotive, Medical, Communications

Conducting an EMI Test – Pre compliance, Compliance Testing, and Post-Audit Testing.  What is uncertainty and how does it affect the test plan?

How the Tests Are Conducted—For all the following tests, the hardware instrumentation, the layout, the pass/fail criteria, and tips/techniques to pass the test will be covered.  Also, the test site will be defined, i.e. OATS, screen room, anechoic chamber and TEM cell.  The step-by-step sequence of how each test is conducted will be detailed.

  • Conducted Emissions
  • Radiated Emissions
  • RF Immunity  Conducted RF Immunity
  • ESD
  • Lightening
  • Electrical Fast Transient
  • Shock and EMP

Interference Coupling Mechanism – What are the near/far field, coupling modes, resonance and why are parts placement, proper terminations and grounding so important for PCBs.

RFI, EMI regarding PCBs, computers, analog designs, and systems

Grounding designs/Filtering – Single ground, modified and multipoint grounding, which one should be used for your design.

CM Radiation – Why is common mode (CM) the major problem versus differential mode (DM)? Antenna Loops – Why are antenna loops the major cause of radiated emission failures for PCBs?

Basics of PCB Radiation – Why do both lumped and distributive transmission lines (T.L.) circuits radiate?  Why does a high Q circuit radiate? How do you terminate a T.L. to minimize radiation?  What about the capacitive load and why does it cause radiation?

PCB Suppression Techniques – Terminations, filters, and devices – how are they used to suppress radiation?

Design for Immunity – Watchdog timers, offensive/defensive programming, checksum, Hamming, and other techniques.  How intelligent software helps pass immunity testing.

Switching Mode Power Supplies (SMPS) – SMPS Chopping Frequency.

  • Why is it the major cause of conducted emissions?
  • Filters – Schematic configurations of harmonic filters.
  • What happens when transients/ESD hits the SMPS mains?
  • What are the immunity concerns?
  • What are screens and snubbers, and how it a transformer wound?

Crosstalk – Inductive/capacitive, forward/backward – How does it occur?  Why does it cause radiation and how is it minimized? How to minimize PCB antenna loops.  Do vias cause radiation?

Power/Ground Planes – Splits, slots, moats, floats, drawbridge, how to design for minimizing emissions from power/ground planes.

How to design for digital/analog (multibias) and single bias PCBs.

Picket fences, the 20H rule and Cu fills – What can they do to suppress emissions?

Ideal stackups to be EMC.

Spread Spectrum Clocking – Why does it suppress radiated emissions?  Under what conditions can it be used?  Is there a better method?

Bypass and Radiation on PCBs – Why use the 0201, Ycap and four terminal cap?  Types of innerplane capacitance and does innerplane capacitance help with emissions?

Interference Coupling Modes – Why does ground bounce cause differential and common mode noise and how does that cause emissions?

Near/Far Field  – What determines the breakpoint between them and what happens to the characteristic impedance at the breakpoint?

Differential/common coupling modes and resonance – What are the quarter length resonant mode differences when the load impedance is very high versus very low?

Analog circuitry – Transients, filtering, grounding and noise isolation.  Opto couplers versus spin resistors; which is better?

Cables/Connectors and PCB, Concerns of PCBs Interfacing with Filtering and Shielding

Capacitive and Magnetic Shielding – What is the difference and how should the shield be tied to the PCB ground for either case?

Slots in PCBs – Why do they radiate and is the radiation through them predictable?

Shield Grounding – How should shields be tied to the PCB ground to minimize circulation current?

Cable Radiation – Radiation through the shield and at the PCB connector bulkhead connection.

Shielding Types – When do we use Cu and Al versus mu metal, steel, or permalloy?

Transfer Impedance – What is it?  Why is it detrimental to shielding, and how is it minimized?

Shielding Connection – Leakage – How to design a non-emission connection of a PCB connector to a bulkhead.

Enclosures, Motherboards, backplanes & blades

Loss of PCB Ground Plane in Cables – Why does it cause crosstalk, radiation, reflections and propagation delay?

How to design a PCB land trace to a connector pin to eliminate reflections. Demo of an actual design.

 Cables Configuration – What shielding/grounding techniques should be used to minimize crosstalk and radiation when a PCB is connected to a cable?

Antenna Loops with Cable Connections – Why do shielding pigtails cause emission non-compliance?

High-Speed Connectors – How are they configured to minimize skin effect, dielectric loss, crosstalk, and radiation? Filtering – Types of filters, their attenuation capability and how should they be mounted?

Shielding vs Filtering – Cost tradeoffs versus attenuation capability –When should either or be used?

Using Ferrites – Amperes Rule –  Why do they work so well for both DM and CM?

Filtering Mains Supply – Using capacitors, chokes, and torroids.  Filtering both DM and CM noise.

Using Transients Suppressors on Mains and I/O lines – Where should TVSSs, Spark Gaps, Varistors and Zeners be used. Radiation Through Shields – Current density versus skin depth, incident versus reflected fields

Effects of source and load impedance and why mismatches cause radiation

The capacitive load: Zo and propagation delay and radiation effects

90o, 45o bends: Are they radiation concerns?

Guard traces:  Do they stop crosstalk; can they resonate?

Interplane capacitance:  how thin, what material and stack-up placement?

Why the 0201: both for better bypassing and EMI control

Via discontinuity and via resonance concerns

Buses – An explanation of design techniques to minimize radiation for the following buss structures:

  • Multidrop systems, drivers, transceivers, and designing a high-speed bus 
  • How they function, clock rates, typical failures
  • ISI: minimize the effect with equalization and pre-emphasis
  • LVDS: types, unbalance, noise, layout, and making them function

Attributes/drawbacks of loosely/tightly couple differential pairs

Differential impedance:  odd and even modes and why odd mode leads to radiation

Advantages and disadvantages of edge (side by side), broadside (dual), asymmetric, and microstrip differentials

Internet of Things (IOT) – How to provide shielding and grounding for cable assemblies when interfacing with various devices (auto, telecom, etc.), high speed and high/low voltages.

Design Techniques for providing radiation and susceptibility compliance for 5G (24 Gbs to 54 Gbs).  Methods described will be pre-emphasis on drivers and how to pass radiated emission on double amplitude and high edge rate signals.  Interfacing high speed connectors for reflections and radiation.

One big concern today is the aperture openings versus the frequency of signals versus the higher density packaging, i.e. ICs are running hotter and the ever-increasing signal edge rate.  This leads to more radiation through the apertures, i.e. lamda is shorter, but more heat is generated because Power = C times F times V2.

What’s new in enclosure absorption materials and what are their capabilities for minimizing radiation?  What’s new in heat sink materials (backplanes, blades, servers) which in turn alleviate the need for heat conduction through the apertures?  These current issues will also be covered in the course.

Coordinator & Lecturer

Robert Hanson, MSEE, has unmatched experience in teaching and knowledge of electronics. As a Testability Overseer for Boeing CommercialAirline products, Mr. Hanson has worked with non-EEs and EEs. He understands the need to use clear communication,and he spends extra time answering student questions during his presentations or privately afterward. Mr. Hanson has over 40 years of experience in the design manufacturing and testing areas. His initial education was in Industrial Engineering (BSIE) Business Administration (BSBA). After receiving his BSEE/MSEE, he became highly involved in all aspects of electronic testing. As a digital design engineer at The Boeing Company, Rockwell, Honeywell, and Loral.

Mr. Hanson designed and provided prototype operational analysis on many high-speed designs, including PCBs for AWACs, B1-B, 747-400, missiles, and ground support test equipment. He has played a very active role in automating the line,implementing robotics, and participating in producibility studies and working in the CAE/CAD/CAT, JIT,simulation,and automatic assembly environments. He has also performed studies and headed research projects in the computer-integrated manufacturing environment. Mr. Hanson has extensive experience in the testing disciplines (both factory and field,commerical and military as the testability overseer for Boeing Commercial Airline products.

Building on that practical knowledge, Mr. Hanson has taught these courses many times receiving outstanding reviews each time from participants. He has presented his courses for the University of California – Berkeley, University of Wisconsin, University of Oxford (England), Seattle Pacific University, University of Washington, University of California – Los Angeles. Mr. Hanson has taught electronic courses throughout the United States, Europe,South Africa,the Middle East, and Asia.

AWARDS : Boeing Company Aerospace Man of the Year for saving $6,000,000 for inventing a new testing technique for the Boeing B-1 bomber electronics.

Robert Hanson has conducted private seminars and/or consulting for 3-Com, Advanced Fibre Communications, Alcatel, Allied Signal,AMO, AMO-Dresden,Apple, AT&T,Autoliv, Boeing, Chrysler, Cisco, Compaq, Cray, da Vinci Systems, Data Device, Dell, Delphi, EDA Technologies – South Africa, Ford, Free Scale Technologies, Gateway , GE, GenRad, Honeywell, HP, HP – Barcelona, IBM, Intel, Kaneta High Tech Materials, KLA Tencor, Lockheed, Lucent, LXE, Marconi, Micron, Motorola, NASA, NEC,eLuminant, Navico, Nortel,Northrop Grumman, Panasonic, Qualcomm, Raytheon, Rockwell, Samsung-Korea,Solectron, Storage Tek,Sun, Tektronix, Teradyne,Texas Instruments,TRW, Tyco Electronics,Tycom Laboratories, U.S. Trade Commission, United Defense, Wilson-Sonsini-Goodrich and roseti Law Firm, Xerox,and Xilinx.

ABT Media – Singapore,Advanced Electronic Diagnosis (AED) – Saudi Arabia,Atkins Technical, Inc., Bacharach Inc. BBN Graphics, Benthos,Bourns, Compression Labs, Inc. Con Med Linvatec, Goutier, Delphax, Dynalco, Eldec, First Inertial Switch, Fluke,Genicom, Hathaway,Johnson&Johnson,Jet Propulsion Labs (JPL), Loral Aerospace , Martin Marietta, Maxim Integrated Products,McBeth, Medrad, Medtronic, Motion Engineering, Inc., Norsat lnternatinal,Okidata, Pharmacia Deltec, Precor,Satcom,Southern Research Institute,Wellex, Aesalsan (Turkey),Jefferson Labs,Schmitt, NVE, McDermott,Will, and Emery Law Firm, FLIR, Data 1/0, Pulsecom,Symbol Technologies, U.S. Navy – Idaho, and JSI.

Each Student Receives

  • A 310-page comprehensive set of course notes.
  • “EMC for Product Designers” (Fifth Edition) by Tim Williams
  • A 26-page “How to Become a Circuit Master,” a booklet which provides a detailed description of how a bareboard is manufactured and tested.

A supplemental addendum reinforcing information in the course notes is included.

For more information contact the Short Course Program Office:
shortcourses@uclaextension.edu | (310) 825-3344 | fax (310) 206-2815

image_print